Confidence Sets Based on Penalized Maximum Likelihood Estimators

نویسنده

  • Benedikt M. Pötscher
چکیده

Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the length of the shortest interval based on the adaptive LASSO, which is larger than the length of the shortest interval based on the LASSO, which in turn is larger than the standard interval based on the maximum likelihood estimator. In the case where the penalized estimators are tuned to possess the ‘sparsity property’, the intervals based on these estimators are larger than the standard interval by an order of magnitude. Furthermore, a simple asymptotic confidence interval construction in the ‘sparse’ case, that also applies to the smoothly clipped absolute deviation estimator, is discussed. The results for the known-variance case are shown to carry over to the unknown-variance case in an appropriate asymptotic sense. MSC Subject Classifications: Primary 62F25; secondary 62C25, 62J07.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring

This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...

متن کامل

Improved estimation of site occupancy using penalized likelihood.

When detection or occupancy probability is small or when the number of sites and number of visits per site is small, maximum likelihood estimators (MLE) of site occupancy parameters have large biases, are numerically unstable, and the corresponding confidence intervals have smaller than nominal coverage. We propose an alternative method of estimation, based on penalized likelihood. This method ...

متن کامل

On the Maximum Likelihood Estimators for some Generalized Pareto-like Frequency Distribution

Abstract. In this paper we consider some four-parametric, so-called Generalized Pareto-like Frequency Distribution, which have been constructed using stochastic Birth-Death Process in order to model phenomena arising in Bioinformatics (Astola and Danielian, 2007). As examples, two ”real data” sets on the number of proteins and number of residues for analyzing such distribution are given. The co...

متن کامل

Bootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution

This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...

متن کامل

IMPROVING GAUSSIAN MIXTURE DENSITY ESTIMATES 1 Averaging

We apply the idea of averaging ensembles of estimators to probability density estimation. In particular we use Gaussian mixture models which are important components in many neural network applications. One variant of averaging is Breiman's \bagging", which recently produced impressive results in classiication tasks. We investigate the performance of averaging using three data sets. For compari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009